Article ID Journal Published Year Pages File Type
439814 Computer-Aided Design 2007 12 Pages PDF
Abstract

In the finite element analysis of metal forming processes, many mesh elements are usually deformed severely in the later stage of the analysis because of the corresponding large deformation of the geometry. Such highly distorted elements are undesirable in finite element analysis because they introduce error into the analysis results, and, in the worst case, inverted elements can cause the analysis to terminate prematurely. This paper proposes a new inverse-adaptation method that reduces or eliminates the number of inverted mesh elements created in the later stage of finite element analysis, thereby lessening the chances of early termination and improving the accuracy of the analysis results. By this method, a simple uniform mesh is created initially, and a pre-analysis is run in order to observe the deformation behavior of the elements. Next, an input hex-dominant mesh is generated in which each element is “inversely adapted”, or pre-deformed in such a way that it has approximately the opposite shape of the final shape that normal analysis would deform it into. Thus, when finite element analysis is performed, the analysis starts with an input mesh of inversely adapted elements whose shapes are not ideal. As the analysis continues, the element shape quality improves to almost ideal, and then, toward the final stage of analysis, degrades again, but much less than would be the case without the inverse adaptation. This method permits the analysis to run to the end, or to a further stage, with no inverted elements. Besides its pre-skewing the element shape, the proposed method is also capable of controlling the element size according to the equivalent plastic strain information collected from the pre-analysis. The proposed inverse adaptation can be repeated iteratively until reaching the final stage of deformation.

Related Topics
Physical Sciences and Engineering Computer Science Computer Graphics and Computer-Aided Design
Authors
, ,