Article ID Journal Published Year Pages File Type
440300 Computer-Aided Design 2010 14 Pages PDF
Abstract

The manufacturing of a mechanical part is a dynamic evolution process from a raw workpiece to the final part, in which the generation of serial 3D models reflecting the changes on geometric shapes is especially critical to digital manufacturing. In this paper, an approach driven by the process planning course, the machining semantics and the machining geometry to reconstruct incrementally the serial 3D models for rotational part’s dynamic evolution is proposed. The two major techniques involved are: (1) extraction of machining semantics based on process planning language understanding; (2) 3D reconstruction from 2D procedure working drawings guided by machining semantics and visualization for the reconstructed series of 3D models. Compared with the conventional 3D reconstruction methods, this approach introduced the process planning course and relevant information to implement a dynamic, incremental and knowledge-based reconstruction which can greatly reduce the efforts in reconstruction and extend the collection of geometric shapes to be reconstructed.

Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Graphics and Computer-Aided Design
Authors
, , , , ,