Article ID Journal Published Year Pages File Type
440564 Computer Aided Geometric Design 2015 16 Pages PDF
Abstract

•Generalization of the de Casteljau algorithm with new parameters.•Geometric interpretation of the new parameters.•New direct method of curve design.•New results are illustrated with many pictures.

The investigation of the umbral calculus based generalization of Bernstein polynomials and Bézier curves is continued in this paper: First a generalization of the de Casteljau algorithm that uses umbral shift operators is described. Then it is shown that the quite involved umbral shifts can be replaced by a surprisingly simple recursion which in turn can be understood in geometrical terms as an extension of the de Casteljau interpolation scheme. Namely, instead of using only the control points of level r−1r−1 to generate the points on level r   as in the ordinary de Casteljau algorithm, one uses also points on level r−2r−2 or more previous levels. Thus the unintuitive parameters in the algebraic definition of generalized Bernstein polynomials get geometric meaning. On this basis a new direct method for the design of Bézier curves is described that allows to adapt the control polygon as a whole by moving a point of the associated Bézier curve.

Related Topics
Physical Sciences and Engineering Computer Science Computer Graphics and Computer-Aided Design
Authors
,