Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
440996 | Computer Aided Geometric Design | 2009 | 16 Pages |
Abstract
For all curve representations that adopt the control-point paradigm, we present a method for computing the domain, where a user-specified control point is free to move so that the corresponding spatial curve is regular and of constant sign of torsion along a subinterval of its parametric domain of definition. The method is illustrated for a Bézier and a B-spline curve. Furthermore, its utility for fairing curves under torsion-sign constraints in quadratic-programming context, is illustrated for a pair of Bézier curves. Finally, it is shown that the obtained results remain useful if, besides the user-selected free control point, neighboring ones are permitted to vary within convex polyhedra.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Graphics and Computer-Aided Design