Article ID Journal Published Year Pages File Type
441285 Computer Aided Geometric Design 2009 15 Pages PDF
Abstract

3D models are now widely available for use in various applications. The demand for automatic model analysis and understanding is ever increasing. Model segmentation is an important step towards model understanding, and acts as a useful tool for different model processing applications, e.g. reverse engineering and modeling by example. We extend a random walk method used previously for image segmentation to give algorithms for both interactive and automatic model segmentation. This method is extremely efficient, and scales almost linearly with the number of faces, and the number of regions. For models of moderate size, interactive performance is achieved with commodity PCs. We demonstrate that this method can be applied to both triangle meshes and point cloud data. It is easy-to-implement, robust to noise in the model, and yields results suitable for downstream applications for both graphical and engineering models.

Related Topics
Physical Sciences and Engineering Computer Science Computer Graphics and Computer-Aided Design