Article ID Journal Published Year Pages File Type
441286 Computer Aided Geometric Design 2009 15 Pages PDF
Abstract

We present an alternative approach to standard geometric shape editing using physically-based simulation. With our technique, the user can deform complex objects in real-time. The basis of our method is formed by a fast and accurate finite element implementation of an elasto-plastic material model, specifically designed for interactive shape manipulation. Using quadratic shape functions, we reduce approximation errors inherent to methods based on linear finite elements. The physical simulation uses a volume mesh comprised of quadratic tetrahedra, which are constructed from a coarser approximation of the detailed surface. In order to guarantee stability and real-time frame rates during the simulation, we cast the elasto-plastic problem into a linear formulation. For this purpose, we present a corotational formulation for quadratic finite elements. We demonstrate the versatility of our approach in interactive manipulation sessions and show that our animation system can be coupled with further physics-based animations, like fluids and cloth, in a bi-directional way.

Related Topics
Physical Sciences and Engineering Computer Science Computer Graphics and Computer-Aided Design