Article ID Journal Published Year Pages File Type
447607 AEU - International Journal of Electronics and Communications 2014 8 Pages PDF
Abstract

This paper proposes a novel bearings-only maneuvering target tracking algorithm based on maximum entropy fuzzy clustering in a cluttered environment. In the proposed algorithm, the interacting multiple model (IMM) approach is used to solve the maneuvering problem of target, and the false alarms generated by clutter are accommodated through a probabilistic data association filter (PDAF). To reduce the computational load, the association probability is substituted by fuzzy membership degree provided by a modified version of fuzzy clustering algorithm based on maximum entropy principle, and the “maximum validation distance” is also defined based on the discrimination factor, which enables the algorithm eliminate invalid measurements. Moreover, to avoid the unobservability problem of passive target tracking, a nonlinear measurement model of multiple passive sensors is formulated. Finally, simulation results show that the proposed algorithm has advantages over the conventional IMM-PDAF algorithm in terms of simplicity and efficiency.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, ,