Article ID Journal Published Year Pages File Type
447757 AEU - International Journal of Electronics and Communications 2011 5 Pages PDF
Abstract

A novel Hilbert-shaped complementary single split ring resonator (H-CSSRR) with an alterative split gap was initially presented and studied. Transmission characteristics of several CSSRR cells were assessed by full-wave electromagnetic (EM) simulation and analyzed by electrical simulation (equivalent circuit model). Miniaturization mechanism as well as effective EM parameters retrieval is also involved. Comparing to conventional CSSRR, proposed H-CSSRR was demonstrated with a merit of lower primary transmission zero realized by negative effective permittivity and multi-resonance behavior attributing to self-similarity of Hilbert geometry. For application, a tunable assembled low-pass filter (LPF) by periodically loading H-CSSRR cells and open stubs is designed, fabricated and measured. Measurement results indicate that the designed LPF has many good performances such as relative low insertion loss (maximum 0.59 dB) in passband, ultra-wide stop-band characterized by 20 dB insertion loss (from 2.45 to 25 GHz) as well as steep rejection with sharp transition band (2.15–2.45 GHz) out of band. Excellent property and consistent numerical and experimental results of the developed LPF have confirmed the effectiveness of this design concept.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , ,