Article ID Journal Published Year Pages File Type
450579 Computer Communications 2006 12 Pages PDF
Abstract

Network lifetime and transmission quality are of paramount importance for rate control in an energy constrained multi-hop wireless network. It is known that they depend on mechanisms that span several protocol layers due to the existing interference across collision links and the energy constrained nature of wireless nodes. Although separate consideration of these issues simplifies the system design, it is often insufficient for wireless networks when the overall system performance is required. In this paper, we present a framework for cross-layer rate control towards maximum network lifetime and collision avoidance. The main contributions of this paper are twofold. First, although the link attainable rate is typically a non-convex and non-separable function of persistent probabilities, we prove the convergence of this cross-layer algorithm to the global optimum of joint congestion control and random access algorithm under the framework of nonlinear programming. Second, by adjusting a parameter in the objective function, we achieve the tradeoff between transmission quality and network lifetime. Simulations illustrate the desirable properties of the proposed algorithm, including convergence to the global optimum, better performance than the layered scheme, desirable tradeoff between transmission quality and network lifetime.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , ,