Article ID Journal Published Year Pages File Type
4526335 Advances in Water Resources 2009 12 Pages PDF
Abstract

This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (LTRT) to solve saltwater intrusion problems. A directional-speed-of-sound (DSS) technique is introduced to take into account the hydraulic conductivity heterogeneity and discontinuity, as well as the velocity-dependent dispersion coefficient. The forcing terms in the LTRT model are customized in order to recover the density-dependent groundwater flow and mass transport equations. Using the LTRT with the squared DSS achieves at least second-order accuracy. The LTRT results are verified with Henry’s analytical solution as well as compared with several numerical examples and modified Henry problems that consider heterogeneous hydraulic conductivity and velocity-dependent dispersion. The numerical results show good agreement with the Henry analytical solution and with the numerical solutions obtained by other numerical methods.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,