Article ID Journal Published Year Pages File Type
4526884 Advances in Water Resources 2007 13 Pages PDF
Abstract

Non-invasive magnetic resonance microscopy (MRM) methods are applied to study biofouling of a homogeneous model porous media. MRM of the biofilm biomass using magnetic relaxation weighting shows the heterogeneous nature of the spatial distribution of the biomass as a function of growth. Spatially resolved MRM velocity maps indicate a strong variation in the pore scale velocity as a function of biofilm growth. The hydrodynamic dispersion dynamics for flow through the porous media is quantitatively characterized using a pulsed gradient spin echo technique to measure the propagator of the motion. The propagator indicates a transition in transport dynamics from a Gaussian normal diffusion process following a normal advection diffusion equation to anomalous transport as a function of biofilm growth. Continuous time random walk models resulting in a time fractional advection diffusion equation are shown to model the transition from normal to anomalous transport in the context of a conceptual model for the biofouling. The initially homogeneous porous media is transformed into a more complex heterogeneous porous media by the biofilm growth.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,