Article ID Journal Published Year Pages File Type
452902 Computer Networks 2014 15 Pages PDF
Abstract

Generally, the lifetime of a wireless sensor network (WSN) is defined as the duration until any sensor node dies due to battery exhaustion. If the traffic load is not properly balanced, the batteries of some sensor nodes may be depleted quickly, and the lifetime of the WSN will be shortened. While many energy-efficient routing schemes have been proposed for WSNs, they focus on maximizing the WSN lifetime. In this paper, we propose a scheme that satisfies a given ‘target’ lifetime. Because energy consumption depends on traffic volume, the target lifetime cannot be guaranteed through energy-efficient routing alone. We take an approach that jointly optimizes the sensing rate (i.e., controlling the sensor-traffic generation or duty cycle) and route selection. Satisfying the target lifetime while maximizing the sensing rate is a NP-hard problem. Our scheme is based on a simple Linear Programming (LP) model and clever heuristics are applied to compute a near-optimal result from the LP solution. We prove that the proposed scheme guarantees a 1/2-approximation to the optimal solution in the worst case. The simulation results indicate that the proposed scheme achieves near-optimality in various network configurations.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , ,