Article ID Journal Published Year Pages File Type
453737 Computers & Electrical Engineering 2014 10 Pages PDF
Abstract

•A simple and low-complex methodology for NoC prototyping under Poisson and self-similar traffics is proposed.•A real-world methodology for voltage-island partitioning for Xilinx FPGAs is proposed.•The effect of number of frequency islands on the overall SoC power is explained.

As System-on-Chips (SoCs) grow in complexity and size, proposals of networks-on-chip (NoCs) as the on-chip communication infrastructure are justified by reusability, scalability, and energy efficiency provided by the interconnection networks. Simulation and mathematical analysis offer flexibility for the evaluations under various network configurations. However, the accuracy of such analyzing methods largely depends on the approximations made. On the other hand, prototyping can be used to improve the evaluation accuracy by bringing the design closer to reality. In this paper, we propose a FPGA prototype that is general enough to model different video-processing SoCs where different cores communicate via NoC. To model NoC, we accurately implement a fully-synthesized on-chip router supporting multiple virtual channels. For the processing nodes, on the other side, we propose a general and simple traffic generator capable of modeling different synthetic functions (i.e. Poisson and self-similar). Indeed, the application traffic is modeled using 1-D hybrid cellular automata which can effectively generate high quality pseudorandom patterns. Finally, for the energy efficiency, the proposed prototype is capable to support multiple frequency regions. To realize the voltage–frequency island partitioned SoC, we use the utilities that Xilinx FPGA platform offers to design Globally Synchronous Locally Asynchronous (GALS) systems via Delay-Locked Loop elements.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , ,