Article ID Journal Published Year Pages File Type
454163 Computers & Electrical Engineering 2010 8 Pages PDF
Abstract

This paper proposes a new method to segment and track multiple objects through occlusion by integrating spatial-color Gaussian mixture model (SCGMM) into an energy minimization framework. When occlusion does not occur, a SCGMM is learned for each object. When the objects are subject to occlusion, energy minimization is used to segment the objects from occlusion. To make the learned SCGMMs suitable for the segmentation of the current occlusion, a displacing procedure is utilized to adapt the SCGMMs to the spatial variations. A multi-label energy function is formulated building on the displaced SCGMMs and then minimized using the multi-label graph cut algorithm, thus leading to both the segmentation and tracking results of the objects with occlusion. Experimental validation of the proposed method is performed and presented on several video sequences.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , ,