Article ID Journal Published Year Pages File Type
454577 Computers & Security 2009 10 Pages PDF
Abstract

Integrated circuits (ICs) are often produced in foundries that lack effective security controls. In these foundries, sophisticated attackers are able to insert malicious Trojan circuits that are easily hidden in the large, complex circuitry that comprises modern ICs. These so-called Trojan circuits are capable of launching attacks directly in hardware, or, more deviously, can facilitate software attacks. Current defense against Trojan circuits consists of statistical detection techniques to find such circuits before product deployment. The fact that statistical detection can result in false negatives raises the obvious questions: can attacks be detected post-deployment, and is secure execution nonetheless possible using chips with undetected Trojan circuits? In this paper we present the Secure Heartbeat And Dual-Encryption (SHADE) architecture, a compiler–hardware solution for detecting and preventing a subset of Trojan circuit attacks in deployed systems. Two layers of hardware encryption are combined with a heartbeat of off-chip accesses to provide a secure execution environment using untrusted hardware. The SHADE system is designed to complement pre-deployment detection techniques and to add a final, last-chance layer of security.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , ,