Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
455680 | Computers & Electrical Engineering | 2013 | 10 Pages |
•We proposed an approach for segmenting microarray image.•We make a regular gridding based on wavelet transform and correlation.•Segmenting spots based on clustering techniques.•We evaluate an approach via quality measures.
In this paper, we propose a new regular gridding and segmentation approach for microarray image. Initially, the microarray images are preprocessed using Stationary Wavelet Transform (SWT), followed by a hard thresholding filtering technique to get a de-noised microarray image. Then, we use autocorrelation to enhance the self-similarity of the image profile to get a regular gridding.Fuzzy Gaussian Mixture Model (FGMM) is used for spot segmentation. This approach has the capabilities of fitting data as generalized GMM but it can reduce about half of their computational time. Comparing probability based GMM with distance based FGMM, the latter outperforms the former in terms of computational efficiency, Due to the nature of the fast computation and nonlinear fitting of the FGMM approach.The proposed approach was evaluated using images from the Stanford Microarray Database (SMD), proved more accurate in intensity computation and more reliable means for estimating gene expression than conventional methods.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide