Article ID Journal Published Year Pages File Type
4582802 Finite Fields and Their Applications 2015 37 Pages PDF
Abstract

In this paper we study asymptotic properties of families of zeta and L-functions over finite fields. We do it in the context of three main problems: the basic inequality, the Brauer–Siegel type results and the results on distribution of zeroes. We generalize to this abstract setting the results of Tsfasman, Vlăduţ and Lachaud, who studied similar problems for curves and (in some cases) for varieties over finite fields. In the classical case of zeta functions of curves we extend a result of Ihara on the limit behaviour of the Euler–Kronecker constant. Our results also apply to L-functions of elliptic surfaces over finite fields, where we approach the Brauer–Siegel type conjectures recently made by Kunyavskii, Tsfasman and Hindry.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,