Article ID Journal Published Year Pages File Type
4583167 Finite Fields and Their Applications 2012 25 Pages PDF
Abstract

We define Frobenius incidence varieties by means of the incidence relation of Frobenius images of linear subspaces in a fixed vector space over a finite field, and investigate their properties such as supersingularity, Betti numbers and unirationality. These varieties are variants of the Deligne–Lusztig varieties. We then study the lattices associated with algebraic cycles on them. We obtain a positive-definite lattice of rank 84 that yields a dense sphere packing from a 4-dimensional Frobenius incidence variety in characteristic 2.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory