Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4583261 | Finite Fields and Their Applications | 2008 | 18 Pages |
Abstract
De Mathan [B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France, Suppl. Mém. 21 (1970)] proved that Khintchine's theorem on homogeneous Diophantine approximation has an analogue in the field of formal Laurent series. Kristensen [S. Kristensen, On the well-approximable matrices over a field of formal series, Math. Proc. Cambridge Philos. Soc. 135 (2003) 255–268] extended this metric theorem to systems of linear forms and gave the exact Hausdorff dimension of the corresponding exceptional sets. In this paper, we study the inhomogeneous Diophantine approximation over a field of formal Laurent series, the analogue Khintchine's theorem and Jarnik–Besicovitch theorem are proved.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory