Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4583807 | Journal of Algebra | 2016 | 12 Pages |
Cluster algebras are a recent topic of study and have been shown to be a useful tool to characterize structures in several knowledge fields. An important problem is to establish whether or not a given cluster algebra is of finite type. Using the standard definition, the problem is infeasible since it uses mutations that can lead to an infinite process. Barot, Geiss and Zelevinsky [1] presented an easier way to verify if a given algebra is of finite type, by testing if all chordless cycles of the graph related to the algebra are cyclically oriented and if there exists a positive quasi-Cartan companion of the skew-symmetrizable matrix related to the algebra. We develop an algorithm that verifies these conditions and decides whether or not a cluster algebra is of finite type in polynomial time. The second part of the algorithm is used to prove that the more general problem to decide if a matrix has a positive quasi-Cartan companion is in NPNP class.