Article ID Journal Published Year Pages File Type
4584135 Journal of Algebra 2015 49 Pages PDF
Abstract

In this paper we develop a novel approach to Witt vector rings and to the (relative) de Rham Witt complex. We do this in the generality of arbitrary commutative algebras and arbitrary truncation sets. In our construction of Witt vector rings the ring structure is obvious and there is no need for universal polynomials. Moreover a natural generalization of the construction easily leads to the relative de Rham Witt complex. Our approach is based on the use of free or at least torsion free presentations of a given commutative ring R and it is an important fact that the resulting objects are independent of all choices. The approach via presentations also sheds new light on our previous description of the ring of p  -typical Witt vectors of a perfect FpFp-algebra as a completion of a semigroup algebra. We develop this description in different directions. For example, we show that the semigroup algebra can be replaced by any free presentation of R equipped with a linear lift of the Frobenius automorphism. Using the result in Appendix A by Umberto Zannier we also extend the description of the Witt vector ring as a completion to all F‾p-algebras with injective Frobenius map.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,