Article ID Journal Published Year Pages File Type
4584291 Journal of Algebra 2015 19 Pages PDF
Abstract

We show that a bimodule between block algebras which has a fusion stable endopermutation module as a source and which induces Morita equivalences between centralisers of nontrivial subgroups of a defect group induces a stable equivalence of Morita type; this is the converse to a theorem of Puig. The special case where the source is trivial has long been known by many authors. The earliest instance of a result deducing a stable equivalence of Morita type from local Morita equivalences with possibly nontrivial endopermutation source is due to Puig, in the context of blocks with abelian defect groups with a Frobenius inertial quotient. The present note is motivated by an application, due to Biland, to blocks of finite groups with structural properties known to hold for hypothetical minimal counterexamples to the Zp⁎-Theorem.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,