Article ID Journal Published Year Pages File Type
4584585 Journal of Algebra 2015 43 Pages PDF
Abstract

We show that every scheme (resp. algebraic space, resp. algebraic stack) that is quasi-compact with quasi-finite diagonal can be approximated by a noetherian scheme (resp. algebraic space, resp. stack). More generally, we show that any stack which is étale-locally a global quotient stack can be approximated. Examples of applications are generalizations of Chevalley's, Serre's and Zariski's theorems and Chow's lemma to the non-noetherian setting. We also show that every quasi-compact algebraic stack with quasi-finite diagonal has a finite generically flat cover by a scheme.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,