Article ID Journal Published Year Pages File Type
4587477 Journal of Algebra 2009 25 Pages PDF
Abstract

The Littelmann path model gives a realization of the crystals of integrable representations of symmetrizable Kac–Moody Lie algebras. Recent work of Gaussent and Littelmann [S. Gaussent, P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (1) (2005) 35–88] and others [A. Braverman, D. Gaitsgory, Crystals via the affine Grassmannian, Duke Math. J. 107 (3) (2001) 561–575; S. Gaussent, G. Rousseau, Kac–Moody groups, hovels and Littelmann's paths, preprint, arXiv: math.GR/0703639, 2007] has demonstrated a connection between this model and the geometry of the loop Grassmanian. The alcove walk model is a version of the path model which is intimately connected to the combinatorics of the affine Hecke algebra. In this paper we define a refined alcove walk model which encodes the points of the affine flag variety. We show that this combinatorial indexing naturally indexes the cells in generalized Mirković–Vilonen intersections.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory