Article ID Journal Published Year Pages File Type
4590093 Journal of Functional Analysis 2014 33 Pages PDF
Abstract

In the paper, we first use the energy method to establish the local well-posedness as well as blow-up criteria for the Cauchy problem on the two-component Euler–Poincaré equations in multi-dimensional space. In the case of dimensions 2 and 3, we show that for a large class of smooth initial data with some concentration property, the corresponding solutions blow up in finite time by using Constantin–Escher Lemma and Littlewood–Paley decomposition theory. Then for the one-component case, a more precise blow-up estimate and a global existence result are also established by using similar methods. Next, we investigate the zero density limit and the zero dispersion limit. At the end, we also briefly demonstrate a Liouville type theorem for the stationary weak solution.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,