| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 4591034 | Journal of Functional Analysis | 2011 | 48 Pages |
Abstract
The joint spectral theory of a system of pairwise commuting self-adjoint left-invariant differential operators L1,…,Ln on a connected Lie group G is studied, under the hypothesis that the algebra generated by them contains a “weighted subcoercive operator” of ter Elst and Robinson (1998) [52]. The joint spectrum of L1,…,Ln in every unitary representation of G is characterized as the set of the eigenvalues corresponding to a particular class of (generalized) joint eigenfunctions of positive type of L1,…,Ln. Connections with the theory of Gelfand pairs are established in the case L1,…,Ln generate the algebra of K-invariant left-invariant differential operators on G for some compact subgroup K of Aut(G).
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
