Article ID Journal Published Year Pages File Type
4593803 Journal of Number Theory 2014 44 Pages PDF
Abstract

Darmon's conjecture on a relation between cyclotomic units over real quadratic fields and certain algebraic regulators was recently solved by Mazur and Rubin by using their theory of Kolyvagin systems. In this paper, we formulate a “non-explicit” version of Darmon's conjecture for Euler systems defined for general p-adic representations, and prove it. In the process of the proof, we introduce a notion of “algebraic Kolyvagin systems”, and develop their properties.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,