Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4593816 | Journal of Number Theory | 2014 | 10 Pages |
Abstract
Let b2a(n) denote the number of 2a-regular partitions of n. Suppose j is a positive integer and i is odd. If aâ{1,2}, we show that#{0â¤nâ¤X:b2a(n)â¡i(mod2j)}â«jX. This improves a result of Ono and Penniston [6]. For aâ¥3 odd, we show that#{0â¤nâ¤X:b2a(n)â¡i(mod2j)}â«a,jXlogX. Finally for aâ¥4 even, we prove that#{0â¤nâ¤X:b2a(n)â¡i(mod2j)}â«a,jXlogX(loglogX)δ(a), where δ(a)=2a2â1â2.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Haobo Dai, Chunlei Liu, Haode Yan,