Article ID Journal Published Year Pages File Type
4594184 Journal of Number Theory 2012 9 Pages PDF
Abstract

Let q be a nonzero rational number. We investigate for which q there are infinitely many sets consisting of five nonzero rational numbers such that the product of any two of them plus q is a square of a rational number. We show that there are infinitely many square-free such q and on assuming the Parity Conjecture for the twists of an explicitly given elliptic curve we derive that the density of such q is at least one half. For the proof we consider a related question for polynomials with integral coefficients. We prove that, up to certain admissible transformations, there is precisely one set of non-constant linear polynomials such that the product of any two of them except one combination, plus a given linear polynomial is a perfect square.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory