Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4594184 | Journal of Number Theory | 2012 | 9 Pages |
Let q be a nonzero rational number. We investigate for which q there are infinitely many sets consisting of five nonzero rational numbers such that the product of any two of them plus q is a square of a rational number. We show that there are infinitely many square-free such q and on assuming the Parity Conjecture for the twists of an explicitly given elliptic curve we derive that the density of such q is at least one half. For the proof we consider a related question for polynomials with integral coefficients. We prove that, up to certain admissible transformations, there is precisely one set of non-constant linear polynomials such that the product of any two of them except one combination, plus a given linear polynomial is a perfect square.