Article ID Journal Published Year Pages File Type
4594294 Journal of Number Theory 2012 12 Pages PDF
Abstract

It is well known that normal bases are useful for implementations of finite fields in various applications including coding theory, cryptography, signal processing, and so on. In particular, optimal normal bases are desirable. When no optimal normal basis exists, it is useful to have normal bases with low complexity. In this paper, we study the type Gaussian normal basis N of the finite field extension Fqn/Fq, which is a classical normal basis with low complexity. By studying the multiplication table of N, we obtain the dual basis of N and the trace basis of N via arbitrary medium subfields Fqm/Fq with m|n and 1⩽m⩽n. And then we determine all self-dual Gaussian normal bases. As an application, we obtain the precise multiplication table and the complexity of the type 2 Gaussian normal basis and then determine all optimal type 2 Gaussian normal bases.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory