Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4594392 | Journal of Number Theory | 2011 | 35 Pages |
We explain how the Bloch–Kato conjecture leads us to the following conclusion: a large prime dividing a critical value of the L-function of a classical Hecke eigenform f of level 1, should often also divide certain ratios of critical values for the standard L-function of a related genus two (and in general vector-valued) Hecke eigenform F. The relation between f and F (Harderʼs conjecture in the vector-valued case) is a congruence involving Hecke eigenvalues, modulo the large prime. In the scalar-valued case we prove the divisibility, subject to weak conditions. In two instances in the vector-valued case, we confirm the divisibility using elaborate computations involving special differential operators. These computations do not depend for their validity on any unproved conjecture.