Article ID Journal Published Year Pages File Type
4594521 Journal of Number Theory 2011 11 Pages PDF
Abstract

Let K be a complete discrete valued field of characteristic zero with residue field kK of characteristic p>0. Let L/K be a finite Galois extension with Galois group G such that the induced extension of residue fields kL/kK is separable. Hesselholt (2004) [2] conjectured that the pro-abelian group {H1(G,Wn(OL))}n∈N is zero, where OL is the ring of integers of L and W(OL) is the ring of Witt vectors in OL w.r.t. the prime p. He partially proved this conjecture for a large class of extensions. In this paper, we prove Hesselholtʼs conjecture for all Galois extensions.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory