Article ID Journal Published Year Pages File Type
4594525 Journal of Number Theory 2011 7 Pages PDF
Abstract

Conjecturally, the parity of the Mordell–Weil rank of an elliptic curve over a number field K is determined by its root number. The root number is a product of local root numbers, so the rank modulo 2 is (conjecturally) the sum over all places of K of a function of elliptic curves over local fields. This note shows that there can be no analogue for the rank modulo 3, 4 or 5, or for the rank itself. In fact, standard conjectures for elliptic curves imply that there is no analogue modulo n for any n>2, so this is purely a parity phenomenon.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory