Article ID Journal Published Year Pages File Type
4594547 Journal of Number Theory 2011 16 Pages PDF
Abstract

TextThis paper proposes new explicit formulas for the doubling and addition steps in Miller's algorithm to compute the Tate pairing on elliptic curves in Weierstrass and in Edwards form. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in addition and doubling. The Tate pairing on Edwards curves can be computed by using these functions in Miller's algorithm. Computing the sum of two points or the double of a point and the coefficients of the corresponding functions is faster with our formulas than with all previously proposed formulas for pairings on Edwards curves. They are even competitive with all published formulas for pairing computation on Weierstrass curves. We also improve the formulas for Tate pairing computation on Weierstrass curves in Jacobian coordinates. Finally, we present several examples of pairing-friendly Edwards curves.VideoFor a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=nideQo-K9ME/.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , , ,