Article ID Journal Published Year Pages File Type
4594553 Journal of Number Theory 2011 25 Pages PDF
Abstract

A pairing-friendly curve is a curve over a finite field whose Jacobian has small embedding degree with respect to a large prime-order subgroup. In this paper we construct pairing-friendly genus 2 curves over finite fields Fq whose Jacobians are ordinary and simple, but not absolutely simple. We show that constructing such curves is equivalent to constructing elliptic curves over Fq that become pairing-friendly over a finite extension of Fq. Our main proof technique is Weil restriction of elliptic curves. We describe adaptations of the Cocks–Pinch and Brezing–Weng methods that produce genus 2 curves with the desired properties. Our examples include a parametric family of genus 2 curves whose Jacobians have the smallest recorded ρ-value for simple, non-supersingular abelian surfaces.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory