Article ID Journal Published Year Pages File Type
4594608 Journal of Number Theory 2010 14 Pages PDF
Abstract

Let be a prime, and k=(p+1)/2. In this paper we prove that two things happen if and only if the class number . One is the non-integrality at p of a certain trace of normalised critical values of symmetric square L-functions, of cuspidal Hecke eigenforms of level one and weight k. The other is the existence of such a form g whose Hecke eigenvalues satisfy “dihedral” congruences modulo a divisor of p (e.g. p=23, k=12, g=Δ). We use the Bloch–Kato conjecture to link these two phenomena, using the Galois interpretation of the congruences to produce global torsion elements which contribute to the denominator of the conjectural formula for an L-value. When , the trace turns out always to be a p-adic unit.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory