Article ID Journal Published Year Pages File Type
4594656 Journal of Number Theory 2010 10 Pages PDF
Abstract

We derive upper bounds on the number of L-rational torsion points on a given elliptic curve or Drinfeld module defined over a finitely generated field K, as a function of the degree [L:K]. Our main tool is the adelic openness of the image of Galois representations, due to Serre, Pink and Rütsche. Our approach is to prove a general result for certain Galois modules, which applies simultaneously to elliptic curves and to Drinfeld modules.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory