Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4594714 | Journal of Number Theory | 2009 | 6 Pages |
J. Cohen, J. Sonn, F. Sairaiji and K. Shimizu proved that there are only finitely many imaginary quadratic number fields K whose Ono invariants OnoK are equal to their class numbers hK. Assuming a Restricted Riemann Hypothesis, namely that the Dedekind zeta functions of imaginary quadratic number fields K have no Siegel zeros, we determine all these K's. There are 114 such K's. We also prove that we are missing at most one such K. M. Ishibashi proved that if OnoK is large enough compared with hK, then the ideal class groups of K is cyclic. We give a short proof and a precision of Ishibashi's result. We prove that there are only finitely many imaginary quadratic number fields K satisfying Ishibashi's sufficient condition. Assuming our Restricted Riemann Hypothesis, we prove that the absolute values dK of their discriminants are less than 2.3⋅109. We determine all these K's with dK⩽106. There are 76 such K's. We prove that there is at most one such K with dK⩾1.8⋅1011.