| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 4594742 | Journal of Number Theory | 2010 | 6 Pages | 
Abstract
												We prove that for any nonnegative integers n and r the binomial sum∑k=−nn(2nn−k)k2r is divisible by 22n−min{α(n),α(r)}22n−min{α(n),α(r)}, where α(n)α(n) denotes the number of 1s in the binary expansion of n. This confirms a recent conjecture of Guo and Zeng [J. Number Theory 130 (2010) 172–186].
Keywords
												
											Related Topics
												
													Physical Sciences and Engineering
													Mathematics
													Algebra and Number Theory
												
											Authors
												Hao Pan, Zhi-Wei Sun, 
											