Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4594807 | Journal of Number Theory | 2009 | 16 Pages |
Abstract
Let φ be a Drinfeld A-module of arbitrary rank and arbitrary characteristic over a finitely generated field K, and set GK=Gal(Ksep/K). Let E=EndK(φ). We show that for almost all primes p of A the image of the group ring A[GK] in EndA(Tp(φ)) is the commutant of E. In the special case E=A it follows that the representation of GK on the p-torsion points φ[p](Ksep) of φ is absolutely irreducible for almost all p.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory