Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4594840 | Journal of Number Theory | 2010 | 17 Pages |
Abstract
Let m⩾2 be an integer, and π an irreducible unitary cuspidal representation for GLm(AQ), whose attached automorphic L-function is denoted by L(s,π). Let be the sequence of coefficients in the Dirichlet series expression of L(s,π) in the half-plane Rs>1. It is proved in this paper that, if π is such that the sequence is real, then there are infinitely many sign changes in the sequence , and the first sign change occurs at some , where Qπ is the conductor of π, and the implied constant depends only on m and ε. This generalizes the previous results for GL2. A result of the same quality is also established for , the sequence of coefficients in the Dirichlet series expression of in the half-plane Rs>1.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory