Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4594994 | Journal of Number Theory | 2008 | 21 Pages |
Abstract
We prove a general symmetric identity involving the degenerate Bernoulli polynomials and sums of generalized falling factorials, which unifies several known identities for Bernoulli and degenerate Bernoulli numbers and polynomials. We use this identity to describe some combinatorial relations between these polynomials and generalized factorial sums. As further applications we derive several identities, recurrences, and congruences involving the Bernoulli numbers, degenerate Bernoulli numbers, generalized factorial sums, Stirling numbers of the first kind, Bernoulli numbers of higher order, and Bernoulli numbers of the second kind.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory