Article ID Journal Published Year Pages File Type
4595006 Journal of Number Theory 2008 8 Pages PDF
Abstract

We generalize Carmichael numbers to ideals in number rings and prove a generalization of Korselt's Criterion for these Carmichael ideals. We investigate when Carmichael numbers in the integers generate Carmichael ideals in the algebraic integers of abelian number fields. In particular, we show that given any composite integer n, there exist infinitely many quadratic number fields in which n is not Carmichael. Finally, we show that there are infinitely many abelian number fields K with discriminant relatively prime to n such that n is not Carmichael in K.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory