Article ID Journal Published Year Pages File Type
4595044 Journal of Number Theory 2008 10 Pages PDF
Abstract

We show that, for any finite field Fq, there exist infinitely many real quadratic function fields over Fq such that the numerator of their zeta function is a separable polynomial. As pointed out by Anglès, this is a necessary condition for the existence, for any finite field Fq, of infinitely many real function fields over Fq with ideal class number one (the so-called Gauss conjecture for function fields). We also show conditionally the existence of infinitely many real quadratic function fields over Fq such that the numerator of their zeta function is an irreducible polynomial.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory