Article ID Journal Published Year Pages File Type
4595089 Journal of Number Theory 2007 18 Pages PDF
Abstract

We extend Euler's well-known quadratic recurrence relation for Bernoulli numbers, which can be written in symbolic notation as n(B0+B0)=−nBn−1−(n−1)Bn, to obtain explicit expressions for n(Bk+Bm) with arbitrary fixed integers k,m⩾0. The proof uses convolution identities for Stirling numbers of the second kind and for sums of powers of integers, both involving Bernoulli numbers. As consequences we obtain new types of quadratic recurrence relations, one of which gives B6k depending only on B2k,B2k+2,…,B4k.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory