Article ID Journal Published Year Pages File Type
4595117 Journal of Number Theory 2008 20 Pages PDF
Abstract

We study a class of well-poised basic hypergeometric series , interpreting these series as generating functions for overpartitions defined by multiplicity conditions on the number of parts. We also show how to interpret the as generating functions for overpartitions whose successive ranks are bounded, for overpartitions that are invariant under a certain class of conjugations, and for special restricted lattice paths. We highlight the cases (a,q)→(1/q,q), (1/q,q2), and (0,q), where some of the functions become infinite products. The latter case corresponds to Bressoud's family of Rogers–Ramanujan identities for even moduli.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory