Article ID Journal Published Year Pages File Type
4595131 Journal of Number Theory 2008 12 Pages PDF
Abstract

First, we prove the existence of certain types of non-special divisors of degree g−1 in the algebraic function fields of genus g defined over Fq. Then, it enables us to obtain upper bounds of the tensor rank of the multiplication in any extension of quadratic finite fields Fq by using Shimura and modular curves defined over Fq. From the preceding results, we obtain upper bounds of the tensor rank of the multiplication in any extension of certain non-quadratic finite fields Fq, notably in the case of F2. These upper bounds attain the best asymptotic upper bounds of Shparlinski–Tsfasman–Vladut [I.E. Shparlinski, M.A. Tsfasman, S.G. Vladut, Curves with many points and multiplication in finite fields, in: Lecture Notes in Math., vol. 1518, Springer-Verlag, Berlin, 1992, pp. 145–169].

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory