Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4595191 | Journal of Number Theory | 2007 | 9 Pages |
Abstract
The truncated or radicalized counting function of a meromorphic function counts the number of times that f takes a value a, but without multiplicity. By analogy, one also defines this function for numbers. In this sequel to [M. van Frankenhuijsen, The ABC conjecture implies Vojta's height inequality for curves, J. Number Theory 95 (2002) 289–302], we prove the radicalized version of Vojta's height inequality, using the ABC conjecture. We explain the connection with a conjecture of Serge Lang about the different error terms associated with Vojta's height inequality and with the radicalized Vojta height inequality.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory