Article ID Journal Published Year Pages File Type
4595245 Journal of Number Theory 2007 17 Pages PDF
Abstract

Let p be an odd prime number and k a finite extension of Qp. Let K/k be a totally ramified elementary abelian Kummer extension of degree p2 with Galois group G. We determine the isomorphism class of the ring of integers in K as an oG-module under some assumptions. The obtained results imply there exist extensions whose rings are ZpG-isomorphic but not oG-isomorphic, where Zp is the ring of p-adic integers. Moreover we obtain conditions that the rings of integers are free over the associated orders and give extensions whose rings are not free.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory