Article ID Journal Published Year Pages File Type
4595247 Journal of Number Theory 2007 55 Pages PDF
Abstract

In this paper, we study the zeta function, named non-abelian zeta function, defined by Lin Weng. We can represent Weng's rank r zeta function of an algebraic number field F as the integration of the Eisenstein series over the moduli space of the semi-stable OF-lattices with rank r. For r=2, in the case of F=Q, Weng proved that it can be written by the Riemann zeta function, and Lagarias and Suzuki proved that it satisfies the Riemann hypothesis. These results were generalized by the author to imaginary quadratic fields and by Lin Weng to general number fields. This paper presents proofs of both these results. It derives a formula (first found by Weng) for Weng's rank 2 zeta functions for general number fields, and then proves the Riemann hypothesis holds for such zeta functions.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory